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ABSTRACT 

This report examines performance limits (Cramer-Rao bounds) on tracking a maneuvering target 
using bearing measurements from a single sensor on a maneuvering platform. An approximation to 
the Cramer-Rao bound for estimating the location, velocity, and acceleration of a constant accelera- 
tion target with a prior distribution of the target's velocity and acceleration is derived for the case 
where the target and the sensor are coplanar. The bound is computed for members of a two- 
parameter family of sensor trajectories, and optimal sensor trajectories within this two-parameter 
family are identified from contour plots of the bound vs the two parameters. The optimal trajectory 
in most cases is a weave around the line of sight to the target, with a period which is proportional to 
the observation time allotted for the measurement. The bound on performance is not in general very 
sensitive to either the sensor's or the target's motion, or to mismatch between the two, except that the 
period of the sensor's weave pattern influences both the time at which good estimates become avail- 
able and the variance of the estimates after a given time interval. 

The bounds indicate that passive ranging techniques should achieve rms range accuracies on the 
order of 10 to 20 percent, after 40 s of maneuvering, when the target bearing is measured with a 
0.30° standard deviation bearing at a 1-s update rate. Range rate accuracies are expected to be 
relatively poor. Simulations of an iterative least-squares maximum a posteriori probability (MAP) 
estimator showed that the estimator performs at the level given by the bound and that it generates 
consistent estimates of the track accuracies. The estimator proved to be sensitive to target maneuvers 
that were not modeled within the estimation algorithm. 

in 
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TRACKING TARGETS WITH BEARING DATA 
FROM A SINGLE SENSOR 

1.    INTRODUCTION TO THE PROBLEM 

It is well established' that when bearings from only a single observer are available, the 
observer must maneuver in such a way that a component of the observer's acceleration is orthog- 
onal to the line of sight to the target, in order to generate data from which the location and 
velocity of a target moving in a straight line can be estimated. It has also been shown that an 
extended Kaiman filter for target position and velocity implemented in Cartesian coordinates 
experiences premature covariance collapse and divergence in bearings-only tracking applications.2 

On the other hand, several variations of the extended Kaiman filter,2-3 an iterative least-squares 
method,4 and an approximate direct least-squares method5 have been shown to achieve better 
performance. These are only a few of the many algorithms for bearings-only target tracking, or 
target motion analysis, that have been proposed.6"19 Although there has been considerable 
research on this topic, important questions do not appear to have yet been properly addressed. In 
particular, there seem to be no published results on bounds or on estimates of the performance 
of bearings-only target tracking applied to maneuvering targets where there is some prior knowl- 
edge of likely velocities and accelerations. This report is an attempt to fill in the apparent gap in 
performance calculations for bearings-only tracking of maneuvering targets. 

The work reported here concerns the accuracy with which one can estimate the location of a 
target using only bearing measurements taken from a moving sensor. By computing the Cramdr- 
Rao lower bound on the variance of an unbiased estimator, one can study the properties of the 
measurement scenario, including a priori information, separately from the performance of par- 
ticular estimators. Since it was found in this work that a maximum a posteriori probability 
(MAP) estimator performs at the level given by the bound, the bounds provide a meaningful 
view of bearings-only target tracking for any given measurement geometry and any given model 
of the target's motion. Operational considerations related to passive ranging are discussed in a 
separate report. 

The target trajectory was modeled for this study as a parabola, i.e., as a constant accelera- 
tion trajectory. For many targets this is a realistic trajectory model, especially for short observa- 
tion times, and it also has the benefits of being simple and of leading to a likelihood function 
that appears in simulations to have only one maximum. The a priori distributions of the target's 
velocity and acceleration are modeled as zero-mean Gaussian. The bounds calculated in this 
report are approximations to the Cram6r-Rao bounds for estimating random variables with 
a priori distributions. The exact Cram6r-Rao bound for estimating a random variable would be 
obtained from the expression for the Fisher information matrix computed as though the 
unknown were a nonrandom parameter, by averaging that expression over the a priori distribu- 
tion of the random variable and adding the Fisher information matrix corresponding to the 
a priori distribution alone. In this work, the Fisher information matrices were not averaged over 



the nndom variables, since they were not found in most cases to be very sensitive to the actual 
values of the target's velocity and acceleration over the range of likely a priori values. The 
bounds reported here are therefore approximations whenever the a priori information is signifi- 
cant. It was found to be unnecessary to include the height of the target in the vector of unknown 
quan :ities for the bound calculations, if the target and sensor remain coplanar throughout the 
observation time. 

The influence of the sensor maneuvers was explored by making contour plots of the bounds 
for a family of sensor maneuvers parameterized by the magnitude of the changes in the compo- 
nent of the sensor platform's velocity orthogonal to the line of sight to the target and by the 
cycle time of the maneuvers. From these plots, optimal maneuvers within the two-parameter fam- 
ily oi maneuvers can be found. The maneuvers thus obtained are optimal only within the family 
of muneuvers considered. Optimization of the sensor trajectory by means of optimal control 
theory20 has been considered for a non-maneuvering target, and the results agree well with the 
two-pararneter optimum obtained here. There has been other work on the performance limits for 
tracking maneuvering targets,21 but the only target maneuvers considered were those orthogonal 
to th: line of sight. It was also found in this work that the optimal trajectory for target position 
estimation is in general different from the optimal trajectory for target velocity estimation. The 
bounds, however, turn out to be relatively insensitive to mismatches between the postulated target 
motion for which the sensor maneuver is optimal and the actual target motion, and also to 
whether the trajectory is optimized for position measurement or velocity measurement. These 
issues will be covered in more detail once the theory and the computational details have been 
laid out. The usefulness of these Crame>-Rao bound calculations as an indication of estimation 
performance was verified by Monte-Carlo simulations of an iterative least-squares maximum 
a posteriori probability (MAP) estimator, which reached the performance limits set by the 
Crarr6r-Rao bound. 



2.    CRAMER-RAO BOUND FOR BEARINGS-ONLY TRACKING 

The Cramer-Rao bound is a lower bound on the variance of unbiased estimators of a non- 
random parameter or of a random variable, and as such represents the best precision that one 
could hope to obtain. The Cramer-Rao bound depends in general on the probability density 
function of the measurements (Reference 22, pp. 79-85) but, as described in Section 2.2, a simpler 
formulation is available for additive white Gaussian noise under a state space description of the 
target's motion. The necessary propagation equations for the target motion, and the measurement 
relations, are presented in Section 2.1. In Section 2.3 a simplification of the bound computations 
is described, in the course of which the elevation angle is dropped from the measurement vector 
and the height of the target is dropped from the target state; this simplification leads to the same 
bound as before, if the target and the sensor are coplanar. Because of the significant reduction in 
computation time, this simplification was adopted for all bound computations in this study. 

2.1.    FORMULATION OF THE ESTIMATION PROBLEM 

The estimation problem is posed as follows. A target is moving along a parabolic path de- 
scribed by the 9-dimensional state vector 

•*t 

••t 

(2.1) 

The degenerate case of linear target motion arises when the second derivative entries are zero. 
The measurements of the target bearing are made from a sensor on a platform that is moving 
along an arbitrary trajectory given by xs(t) = [xs(t), ys(t)]. These measurements are taken at a 
fixed interval Ts and are corrupted by additive Gaussian noise that is independent and identically 
distributed from measurement to measurement. With the definition of xj, as the state of the target 
when sample n is taken, the target state propagates according to the equation 

<+i » *< (2-2) 



where the propagation matrix F is a block diagonal matrix with three identical 3X3 blocks, 

/F' 0 0\ 

F =    0    F  0 , (2.3) 

\0 0 F/ 

each Mock of which is given by 

(2.4) 

Each neasurement is a vector r, equal to a measurement function h composed of a bearing 6 and 
an elevation <£, 

h=C) 
plus noises we and w^: 

'•CM3 • 
The measured angles are given in terms of the target and sensor coordinates at the time of the 
measurements by 

,    xl - Xs 

d - tan"1  
yt_ys 

and 

z* — zs 

6 = tan-'   (2.7) 
[(xt-Xs)2 + (yt-ys)2]l/2 

The linearized observation matrix, which will be necessary both for evaluating the bound 
and for implementing the MAP estimator, is defined in terms of the measurement function h as 

H = Vxth 

V\ 
(2.8) 



The nonzero derivatives are shown below: 

36       Ay 

3xl 
R

8 

96 Ax 

dyl "' K 
d<(> AxAz 

d\l RgR2 

d<t> AyAz 

dyl RgR2 

d4> R, 

3zl 
R2 

with these definitioi IS: 

Ax = xl-xs 

Ay = yt _yS 

Az = zt _zs 

Rg = VAX
2
 + Ay2 

(2.9) 

(2.10) 

R   = s/Ax2 + Ay2 + Az2 

(Rg is the horizontal distance between the target and the sensor.) The noises we and w^ have the 
autocovariance matrix 

1    0\ 
(2.11) 

The expressions given in Equation (2.7) for the angles and in Equation (2.10) for the angle noise 
may give slightly incorrect values depending on the physical implementation of the angle mea- 
surements and on the geometry. Such errors should be small except for when the target and sen- 
sor are at very different altitudes and at close ranges. 

2.2    CRAMER-RAO BOUNDS AND A PRIORI INFORMATION 

The Fisher information matrix for estimating the current target state xj^ for a target with 
initial state XQ, without a priori information, using measurements taken at time indices 1 through 



N, is given23 by the recursions 

and 

Jn(x«) = (F-l)T Jn_,(,t) Pi + Hn
TR-lHn (2.12) 

The Cramer-Rao lower bound on the variance of say element n of the state vector xL, is given 
(Refe -ence 22, p. 79) by: 

var[x^, > [J^U       . (2.13) 

The s:arting point of the recursion is 

J0 = 0 (2.14) 

I:' on the other hand there is Gaussian a priori information, the target state is treated as a 
random variable (Reference 22, pp. 84-85). The Fisher information matrix JJST(XQ), representing 
infornation available from the data, is computed as before, but the bound is obtained somewhat 
diffen ntly. First, the matrix Jn(Xg) must be averaged over the prior density PQ(X^) of the final 
target state and added to the a priori information matrix 

jA={E[x^)T]}-i        , (2.15) 

to form the Bayesian information matrix 

JB = JA + C dxl
N JN(F%) p0(x«,) (2.16) 

The baund is then given by 

var[x^>[(jB)-']MM        . (2.17) 

This procedure produces a bound that is averaged over all possible target states and is therefore 
indept ndent of the actual state. To the degree that the Fisher information matrix is insensitive to 
the actual target states within the a priori distribution of states, the averaged Fisher information 
matrix J^, is   equal to the Fisher information matrix JJM(XQ) evaluated at one given state. Even if 
the Fisher information matrix does depend on the target state, the approximate "bound" given by 
Equat on (2.13) but with a nonzero a priori information matrix J^ added in provides an indica- 
tion of how the integrand varies with the target state, and to the degree that JN(XQ) is insensitive 
to the initial target state XQ, this "bound" is an approximation to the Cramer-Rao bound com- 
puted from the averaged Fisher information matrix J^,. Since the approximate Cram6r-Rao 
bounds calculated below (Figures 13 to 23) show overall relatively little dependence on the target 
state,   he bound evaluated for a given target state is an adequate approximation to the bound 
computed from the expected value of the Fisher information matrix over the a priori distribution 



of target states. Where the approximate bound does depend on the target state, it is an indicator 
of the sensitivity of passive ranging performance to the target state. 

From these formulations one can make some general inferences about the behavior of the 
error bounds. In the absence of a priori information, the bound is proportional to the angle mea- 
surement variance. When the sampling interval Ts is sufficiently short compared with the time 
scales of the sensor and target maneuvers, the recursion result can be approximated by an inte- 
gral, and the bound is then proportional to the sampling interval. 

2.3    SIMPLIFICATIONS IN A COPLANAR GEOMETRY 

When the trajectories of the sensor and the target lie in the same plane, the uncertainty in 
the altitude of the target can be dropped from the bound computation. This follows from the 
dependence of the derivatives of the elevation angle on the relative height of the target and the 
sensor and from the structure of the Fisher information matrix. Because the derivatives of the 
elevation with respect to the target x and y coordinates are zero when the difference between the 
sensor and the target elevations Az is zero [Equation (2.9)], the linearized measurement matrix H 
takes the form 

H = 

0    0 

0    0 

(2.18) 

and the incremental term in the recursion formula, Equation (2.12), for the Fisher information 
matrix, takes the form 

HTR-'H=   — 
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(2.19) 



In tht recursion given by Equation (2.12) the 3 X 3 blocks of the incremental term, Equa- 
tion (Ü.19). are multiplied by the block diagonal propagator F of Equation (2.4). This multipli- 
catior leaves the overall block structure of HTH unchanged, as it propagates values within the 
3X3 blocks. Hence the 3 X 3 block of the Fisher information matrix that corresponds to eleva- 
tion measurement, consisting of rows and columns 7 through 9, remains uncoupled from the 
remai ling 3X3 blocks on the diagonal, corresponding to x and y position measurement. The 
reduction in rank from a 9 X 9 matrix to a 6X6 matrix leads to a sizable savings in the compu- 
tation time for the bounds. 



3.   OPTIMAL TRAJECTORIES FOR BEARINGS-ONLY TRACKING 

To determine the best performance that one could possibly achieve with bearings-only track- 
ing, one must first identify the optimal maneuvers for the sensor. There has been at least one 
attempt to use optimal control methods to search for the optimal path that minimizes the 
Cramer-Rao bound on range estimation,20 but the slope-following minimization procedure on 
which the optimal control method employed in Reference 20 relies can get trapped in false local 
minima and can consequently produce erroneous solutions. For the present work, an exhaustive 
search procedure was used instead. The usual difficulty with exhaustive searches is of course the 
amount of computation required, and here the computation is limited by constraining the search 
to a two-parameter family of trajectories. The decision to avoid a slope-following search was sub- 
sequently justified, as the bound did indeed display multiple minima for various sensor maneuv- 
ers (Figures 3 to 10). 

An additional issue covered in this study is the distinction between trajectories optimized for 
range estimation and trajectories optimized for range rate estimation. For tracking, one needs not 
only the target's range but also its range rate, and so both the Cramer-Rao bound on the var- 
iance of the estimated range and the Cramer-Rao bound for the range rate should be considered 
separately as performance measures. As shown below, the two measures yield different optimal 
maneuvers. 

3.1    SENSOR MANEUVER PARAMETERIZATION 

It was decided initially to perform an exhaustive search for the optimal sensor trajectory 
over a finite sampling of a few parameters rather than to try a slope-following minimization 
algorithm. In order to keep the dimensionality of the search space small, the possible sensor tra- 
jectories were represented by a family of curves parameterized by only the sensor platform speed, 
the cycle time of its maneuvers, and the variation in the cross-range component of the sensor 
platform's velocity during maneuvering, as described in the next paragraph. All the maneuvers 
were described with reference to the direction of the line of sight to the target, so that a rotation 
of the initial bearing to the target results in a rotation of the sensor platform's maneuver. This 
keeps the relative trajectory of the sensor to the target independent of the initial bearing of the 
target. 

The family of sensor trajectories for a target along the y-axis, when the sensor is at or near 
the origin, are generated by the following equations of motion: 

is = v- Au(l +sin27rt/Tm) 
(3.1) 

yS = yj v2 _ (is)2 

where v is the sensor speed, presumed constant, Tm is the period of the sensor's maneuvers, and 
Av is the speed that is "devoted" to maneuvering. The maneuver period can take on positive or 
negative values, and these two possibilities give rise to different trajectory shapes. A negative 
maneuver period causes in effect a phase shift of the weave pattern relative to the time at which 
the maneuver begins. Figure 1 shows an assortment of sensor trajectories for a distant target on 
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Figure I. Plot of sensor trajectories for a sensor speed of 0.3 km /s andforvarying maneuver periods and speeds. 
l'.ach curve represents an x-y plot of the trajectory of a sensor platform with a maneuver period and a speed 
corresponding to the starting point shown. The curves are computed by integrating Equations (3.1). 

the y-axis for a sensor platform moving at 0.3 km/s (Mach 0.87), with Av varying between 0 and 
v, and for sensor maneuver periods varying between -60 and 60 s. The total time in the examples 
is 120 s. When the target and sensor are at arbitrary points in the x-y plane, these equations 
change. The x-component of the sensor velocity given in Equation (3.1) is rotated to lie orthogo- 
nal to the line of sight to the target and the y-component is rotated to lie along the line of sight. 
Thus 

R 

Ay   Ax> 

g \-Ax  Ay/ 

v - Av(l + sin 27rt/Tm) 

Vv2 - (Xs)2 
(3.2) 
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3.2   OPTIMAL SENSOR TRAJECTORIES 

An efficient means of presenting exhaustive search computations was found to be via con- 
tour plots of the range and range rate bounds. The parameters for the contour plots in Figures 3 
to 10 are given in Tables I and II. The target trajectory for which these contour plots were 
obtained is shown in Figure 2(a), and the optimum trajectories found are shown in Figure 11, fol- 
lowing the indications in Table II. The contour plots of the bound indicate the limit on the 
achievable performance as a function of the trajectory of the sensor platform, and they show how 
the optimal trajectory depends on whether it is optimized for position or for velocity and on the 
degree of a priori information on the target. The plots disclose the existence, suggested at the 
beginning of Section 3, of local minima for sensor maneuvers, which could indeed trap a slope- 
following minimization procedure. It might be feasible, however, to use local minima found using 
a parameterization such as that described here as starting points for a slope-following algorithm 
with many more degrees of freedom. As will be discussed below, the plots also suggest that the 
parameterization chosen does seem to yield performances approximating those obtained by a 
more general maneuver optimization procedure. 

In the contour plots shown here, the horizontal axis is the sensor velocity used in maneuver- 
ing, and the vertical axis is the cycle time of the maneuver. As listed in Table I, the total sensor 
platform speed is fixed at 0.3 km/s and the total observation time is also fixed at 40 s. The value 
actually contoured is the approximate lower limit on the standard deviation given by the Cramer- 
Rao computed as described in Section 2, for either the range or the range rate of the target. For 
all contour plots, the target is inbound starting at 76 km from the origin along the y-axis and 
ending, after 40 s, at 64 km from the origin. The sensor always starts at the origin. The standard 
deviation of the bearing measurements is always 0.3°, with an update interval of 1 s. It is assumed 
that the prior distributions of the target's velocity and acceleration are independent zero-mean 
Gaussian distributions in each coordinate, x and y, with standard deviations listed in Table II. 

TABLE 1 

Parameters for Exhaustive Search 
for Optimal Sensor Maneuvers 

Bearing Standard Deviation (deg) 0.3 

Sample Interval (s) 1 

Sensor Platform Speed (km/s) 0.3 

Sensor Starting Point (km) (0.0) 

Observation Time (s) 40 
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100 100 

75 "        -a 

50 

25 

0 4 
-25 0 25 

(b) 

CROSS RANGE (km) 

Figure 2. These figures show two target and sensor geometries for which exhaustive searches for optimal sensor 
maneuvers were carried out. The inbound target in (a) starts at 88 km on the y-axis, and travels at 0.3 km/s to 
76 km, while the crossing target in (b) starts at 70 km in y,-6 km in x, and travels to a positive displacement of6 km 
in x. The sensor trajectory in both cases has a 30-s maneuver cycle time with a speed and maneuver speed of 
0.3 km/s. The total time in all trajectories shown is 40 s. 

A small quantity equivalent to an a priori position standard deviation of 1000 km is added to the 
diagonal elements of the Fisher information matrix that correspond to the target x and y posi- 
tions in order to make the matrix non-singular. Once the information from the data exceeds that 
from the a priori distribution of the parameters, the effect of adding this quantity to the informa- 
tion is negligible. 

The plots in Figures 3 and 4 were obtained in order to provide a comparison of the present 
maneuver parameterization with the optimal maneuver found in Reference 20, assuming a known 
(or negligible) target range rate and a known (or negligible) acceleration. These represent the 
conditions under which the maneuver was optimized in Reference 20, using a slope-following 
procedure with many degrees of freedom. For these same conditions, an approximate expression 
for the Cram6r-Rao bound on the target range estimation standard deviation is given in Refer- 
ence 21. The optimal trajectory for ranging a target with known range rate and known accelera- 
tion was found in Reference 20 to consist of two approximately straight line segments of the 
same length nearly orthogonal to the line of sight, and in Reference 21, it was shown that for 
such a trajectory the Cram6r-Rao bound on the target range estimate for a distant target is given 
by 

4oaR2 
(3.3) 

where T0 is the total observation time and R is the range of the target. The contour plots shown 
in Figure 3 display two nearly equivalent minima at sensor maneuver periods of ±40-s and a 
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0.06        0.09       0.12       0.15       0.18        0.21        0.24 

SENSOR MANEUVER SPEED (km/s) 

m 
«3 

(5 
r- 
O 

Fi gure 3. The position bound contour plot is shown here for the case analyzed by Olsder20 and by Willman21 of a 
ta 'get with no radial velocity or acceleration and with a constant but unknown cross-range velocity. Local minima 
are indicated by cross-hatched boxes. This plot has a global minimum of 2.5 km at a sensor maneuver speed of 
0. ? km/s and a maneuver period of -44 s, with the resulting trajectory shown in Figure 11(a). 
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0.27     0.30 

Figure 4. The velocity bounds are shown for the same situation as in Figure 3. Local minima are indicated by- 
cross-hatched boxes. The global minimum of 0.005 km/s occurs at a maneuver speed ofO. 18 km/s and at a cycle 
time of 76 s, at the extreme of the range considered. The resulting trajectory is shown in Figure 11(b). 

15 



0.03 0.06        0.09        0.12        0.15        0.18        0.21        0.24 

SENSOR  MANEUVER SPEED (km/s) 

0.27     0.30 

Figure 5. For the contour plot given here it is assumed to be known a priori that the target is radially inbound with 
,i lateral acceleration standard deviation ofO. 1 g and with a velocity standard deviation of 0.05 km/s. The other 
j larameters are as given in Table I. Local minima are indicated by cross-hatched boxes. The global minimum is a 
. standard deviation of 3.6 km at a sensor maneuver velocity of 0.3 km/s and a maneuver period of 44 s, as shown in 
Figure 11(c). 
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Figure 6. This plot of the velocity bounds corresponds to the position bounds of Figure 5. Local minima are 
indicated by cross-hatched boxes. The global minimum occurs at a sensor maneuver velocity of 0.07 km/s and a 
maneuver period of-SO s, resulting in the trajectory shown in Figure 11(d). The value of the minimum standard 
deviation, 0.048 km/s, is almost equal to the a priori standard deviation, hence the measurements provide little new 
information. 
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Figure 7. Contour plot of the Cramer-Rao bound on the position of the target, with a prior velocity standard 
c'eviation of 0.4 kmjs, and a prior acceleration standard deviation of 4 g. Local minima are indicated by 
iross-hatched boxes. The global minimum is a standard deviation of 7.3 km at a sensor maneuver velocity of 
L.3 km js and a maneuver period of 29 s; the trajectory is shown in Figure 11(e). 
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Figure 8. This figure shows the Cramer-Rao bounds for the target velocities for the same parameters as in 
Figure 7. Local minima are indicated by cross-hatched boxes. The global minimum is a standard deviation of 
0.32 km/s at a sensor maneuver velocity of 0.14 km/s and a maneuver period of 42 s. The trajectory for these 
parameters is shown in Figure 11(f). Since the minimum velocity standard deviation, 0.32 km/s, is barely smaller 
than the a priori standard deviation of 0.4 km/s, one can conclude that the measurements provide little indication 
of the target s true radial velocity. 
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Fi %ure 9. The position bound is shown for an a priori velocity standard deviation of 100 km/s and an acceleration 
standard deviation of 100 g, which represents virtually no a priori information on the target. Local minima are 
in Heated by cross-hatched boxes. The minimum of 9.8 km occurs at a maneuver speed of 0.19 km /sand a periodof 
54 s, and the corresponding trajectory is shown in Figure 11(g). 
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SENSOR MANEUVER SPEED (km, s) 

Figure 10. The velocity bound is shown here for an a priori velocity standard deviation of 100 km/s and an 
acceleration standard deviation of 100 g. Local minima are indicated by cross-hatched boxes. The minimum of 
0.56 km Is occurs at a maneuver speed of0.14 km I s and a period of 42 s. The resulting sensor trajectory appears in 
Figure 11(h). 
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F igure 11. Optimal sensor maneuvers/or various degrees of a priori knowledge, as listed in Table II. The plots are 
grouped into pairs, wherein the left member shows the optimal maneuver for target position estimation and the 
right member shows the optimal maneuver for target velocity estimation. 
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third local minimum at a very short maneuver period, associated with a relatively poor measure- 
ment accuracy. From this plot one must suppose that Olsder's minimization procedure was prob- 
ably not trapped near the false local minimum at the short period but instead found a trajectory 
near one of the two nearly equal minima at a maneuver period equal to the 40-s observation 
time. The minimum position bound of 2.5 km obtained with the parameterized curves (Figure 3) 
agrees well with the value of 2.3 km given by Willman's equation [Equation (3.3)], with an angle 
standard deviation aa of 0.3°, a range R of 70 km, a sensor velocity v of 0.3 km/s, a sample 
interval Ts of 1 s, and an observation time T0 of 40 s. As a consequence of the assumption that 
the target has zero acceleration and zero radial velocity, the bounds on the range accuracy, 
shown in Figure 3, and the velocity accuracy, Figure 4, are unreasonably optimistic. 

The plots tabulated in Table II show the bound contours for several levels of a priori infor- 
mation. The most optimistic results are obtained for a target whose range rate and acceleration 
are known almost exactly. Similar contours appear in Figures 5 and 6 for a target with a less 
well-known velocity and acceleration, but the velocity measurement optimization shows there that 
the sensor gains some advantage by moving cross range at an average velocity of 0.3 km/s - 
0.07 km/s = 0.23 km/s, as shown in Figure 11(d). When the a priori information is reduced to the 
more reasonable level of a 0.4-km/s standard deviation for the velocity and a 4-g standard devia- 
tion for the acceleration, the contours shown in Figures 7 and 8 are obtained, and the optimal 
maneuvers are shown in Figures 11(e) and (f). When finally the a priori information is relaxed to 
the point where it is quite meaningless, one finds the behavior shown in Figures 9 and 10, with 
the optimal maneuvers given in Figures 11(g) and (h). While it would be pleasing if a trend in the 
optimal maneuver parameters could be found, none is apparent. Only the obvious conclusion, 
that the error bounds increase, from 2.5 km and 0.05 km/s to 9.8 km and 0.56 km/s as the a pri- 
ori distributions grow broader, can be drawn. There appears to be little point in attempting to 
estimate the range rate of the target after only 40 s of observation time, except when its prior 
standard deviation is as much as 0.56 km/s, since the least achievable a posteriori velocity stand- 
ard deviation is little different from the a priori standard deviation. 

In Table III are shown the optimal sensor maneuver velocity Av and maneuver period Tm 

found by exhaustive search for several different measurement situations. The geometries for the 
70-km range are as shown in Figure 2, and the 200-km ranges have similar configurations. For 
position measurement, if the target is inbound at 70 km, inbound at 200 km, or crossing at 
70 km, the optimal maneuver for a 40-s observation time is a weave with period of about 30 s. 
The situation differs somewhat for velocity measurement, where the period of the weave remains 
at about 40 s whether the target is at 70-km range or at 200-km range but, in the case of the 
nearer inbound target, less of the sensor's velocity is devoted to maneuvering and the sensor 
moves cross   range at an effective velocity of 0.3 km/s - 0.17 km/s = 0.13 km/s while executing a 
smaller weave. The entries for the observation times of 20 s and 120 s show the dependence of 
the optimal trajectory on the time interval after which the best measurement is sought. The sen- 
sor speed devoted to maneuvering remains equal to the total speed of the sensor, but for the 20-s 
observation time the sensor completes nearly 1-1/2 cycles rather than 1-1/3 cycles for 40- and 
120-s observation times. It is not clear why the optimal number of cycles should depend on the 
observation time in this way. 
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TABLE III 

Optimization Results for Various Target Geometries, 

State Vector Components, and Observation Times, 

for the Parameters Given in Table 1 

Target State 
(<m) 

Optimization 
Objective 

Observation 
Time (s) 

Best An 
(km/s) 

Best Tm 

(s) 
Resulting 

Bound 

70  nbound position 40 0.30 29 7.3 km 

70 crossing position 40 0.30 29 7.3   km 

200 inbound position 40 0.30 27 36      km 

70 inbound velocity 40 0.17 42 0.32 km/s 

70 crossing velocity 40 0.29 42 0.25 km/s 

200 inbound velocity 40 0.30 42 0.40 km/s 

70 inbound position 20 0.30 13 12      km 

70 inbound position 120 0.24 64 0.62 km 

200 inbound position 120 0.30 88 13.7   km/s 
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4.   ERROR BOUNDS FOR SUBOPTIMAL 
SENSOR TRAJECTORIES 

The sensor platform will not be able to optimize its trajectory for estimating the state of the 
target without knowing that state in advance, and one therefore needs a robust maneuver trajec- 
tory. The sensor platform can, however, move in a way that provides the best estimate of the 
target's state under some worst-case situation. It is therefore important to determine how sensitive 
the error bounds on estimates of the state of the target are to mismatches between the sensor 
platform's actual trajectory and the optimal trajectory for a given target trajectory. 

Figures 13 through 23 show how the error bounds on estimates of the range and velocity of 
a target vary as a function of elapsed time, for six different target trajectories and for various 
sensor maneuvers. The six target trajectories, shown in Figure 12(a-f) and tabulated in Table IV, 
are at similar ranges and speeds but vary in direction and acceleration. Trajectories (a-c) are 
crossing and (d-f) are inbound. Of each group of three, one has zero lateral acceleration, one has 
0.5-g lateral acceleration, and one has 1-g lateral acceleration. The key to the plots in Figures 13 
to 23 is given by the parameters in Table V and by the markings on the subplots in Figure 12. 
The optimal maneuver is the same for position measurement of an inbound target at either 70- 
or 200-km range or for a crossing target at 70 km, and the combinations that would be redun- 
dant are not tabulated. The plots show that range and velocity measurement performance against 
crossing targets is better than that for inbound targets, that for crossing targets the target's actual 
acceleration has little effect on the bound, but that performance is better against inbound targets 

TABLE IV 

Parameters Describing the Motions of Targets at 70-km Range 

Plot 

Initial Position Initial Velocity Constant Acceleration 

x (km) V(km) x (km/s) y (km/s) x (km/s2) y (km/s2) 

(a) -18 70 0.3 0 0 0 

(b) -18 74.5 0.3 -0.3 0 0.005 

(c) -18 79 0.3 -0.6 0 0.01 

(d) 0 88 0 -0.3 0 0 

(e) 4.5 88 -0.3 -0.3 0.005 0 

(f) 9 88 -0.6 -0.3 0.01 0 

(g) 0 88 0.3-km/s speed, initially inbound, 2°/s turn rate 

The first column refers 
of the targets at a rang 
are increased by 130 ki 

to the plots in Figure 12. To obtain the positions 
e of 200 km, y components of the initial positions 
n. 
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Fiyure 1.2. Illustration of target trajectories used in bound calculations, with parameters as shown in Table IV. 
Th t symbol marks the position of the target at the end of the observation time and is keyed to the subsequent plots 
inihisreport. The sensor speed is 0.3 km/s with a maneuver velocity of 0.3 km/sand a cycle time of 30 s. The total 
tine shown here is 120s, and all distances are in kilometers. 
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that accelerate laterally than against straight-line inbound targets. These observations lead to the 
intuitive notion that lateral motion by the target in effect adds to the lateral motion of the sensor 
to increase the baseline from which the range to the target is estimated. 

The figures also illustrate that the measurement accuracy remains relatively poor until the 
designated observation time for which the trajectory was optimized is reached. Thus, if the 
maneuver is optimized for an observation time of 120 s (Figures 20 and 21), the bound is quite 
large for intermediate times, but at 120 s the limit is smaller than it would be if the sensor path 
were optimized for a shorter period. The optimization for a 20-s observation time illustrates the 
extreme where the trajectory is optimized for a very short observation time, leading to better per- 
formance at 20 s than do the longer observation times but to much poorer performance thereaf- 
ter. Shorter observation times permit acceptable results more rapidly and minimize the degree of 
possible mismatch between the paraboblic model of the target's trajectory and the target's true 
trajectory, but too short a maneuver period can result in a very poor target state estimate. 

The sensitivity of the bound to mismatches between the target state for which the sensor 
maneuver was optimized and the true target state does not seem great enough to merit much 
concern. The position and velocity estimates in Figures 13 through 18 illustrate the variations of 
the bound for several combinations of model and true states. The position and velocity error 
bounds do appear to be sensitive to whether the sensor trajectory was optimized for position or 
velocity measurement, with degradations of about a factor of 2 for a mismatch. The velocity 
measurement bounds also show some sensitivity to whether the trajectory is optimized for targets 
at 70- or at 200-km range. 

The quality of the estimates can be improved by increasing either the rate at which inde- 
pendent samples of the bearing are taken (Figure 22) or by improving the accuracy of the mea- 
surements (Figure 23). The extent of the observed improvement is in line with the notions 
expressed earlier that the bound on the standard deviation of the estimate should be inversely 
related to the number of samples taken during the observation time and proportional to the 
standard deviation of the angle measurements. Thus increasing the sample rate by a factor of 10 
reduces the bound by a factor of about 3, and improving the angular accuracy by a factor of 10 
reduces the bound by a factor of 10. 
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TABLE V 

Parameters for Figures 13 Through 21 

Case 
Target 
Range 
(km) 

Sample 
Rate 
(Hz) 

Angle 
Standard 
Deviation 

(deg) 

Target 
Starting 
Range 
(km) 

Measurement 
Observation 

Time 
(s) 

Figure 

1 70 0.3 70 position 40 13 
2 70 0.3 70 velocity 40 14 
3 70 0.3 200 velocity 40 15 
4 200 0.3 70 position 40 16 
5 200 0.3 70 velocity 40 17 
6 200 0.3 200 velocity 40 18 
7 200 0.3 70 position 20 19 
8 70 0.3 •  70 position 120 20 
9 200 0.3 200 position 120 21 

10 200 10 0.3 70 position 40 22 
11 200 1 0.03 70 position 40 23 

Ths fifth throu gh eighth columns specify the conditions for which the sensor's trajectory 
Wcs optimized. The maneuver velocities and periods for the sensor trajectories are 
summarized in Table III. The figures specified in column eight show the bounds for the 
target's range and range rate. The bottom two rows have parameters different from those 
specified in Table I and are included for comparison. 
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Figure 13.    Cramer-Rao bound vs tracking time for Case 1, Table V. 
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Figure 14.    Cramer-Rao bound vs tracking time for Case 2, Table V. 
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Figure 15.    Cramer-Rao bound vs tracking time for Case 3, Table V. 
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Figure 16.    Cramer-Rao bound vs tracking lime for Case 4, Table V. 
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Figure 17.    Cramer-Rao bound vs tracking time for Case 5. Table V. 
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Figure 18.    Cramer-Rao bound vs tracking lime for Case 6, Table V. 
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Figure 19.    Cramkr-Rao bound vs tracking time for Case 7, Table V. 
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Figure 20.    Cramer-Rao bound vs tracking time for Case 8, Table V. 
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Figure 21.    Cramer-Rao bound vs tracking lime for Case 9, Table V. 
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Figure 22.    Cramer-Rao bound vs tracking time for Case 10, Table V. 
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Figure 23.    Cramer-Rao bound vs tracking time for Case 11, Table V. 
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5.   MAXIMUM A POSTERIORI PROBABILITY TARGET TRACKS 

Tests of a maximum a posteriori probability (MAP) estimator showed performance at the 
level given by the Cramer-Rao bounds. They also disclosed serious divergences in the estimates 
with targets whose trajectories differed significantly from the models on which the estimators 
were based. The MAP estimator of the target state was implemented using an iterative least- 
squares method described in Reference 8 and in Reference 24, pp. 187-190. The equations for the 
iterative least-squares algorithm are given in the Appendix. The a priori distribution of the target 
state at the time of the latest measurement was taken to be zero-mean Gaussian with a velocity 
standard deviation of 0.4 km/s and an acceleration standard deviation of 4g, except where the 
target model was linear, in which case the a priori standard deviation of the acceleration was in 
effect zero. Although a zero-mean Gaussian is perhaps not the most plausible distribution, it has 
the advantages of being handled easily and of leading to estimation algorithms that apparently 
converge to global maxima of the probability. Tracks were obtained by appending new measure- 
ments to the list of previous measurements and running the iterative least-squares algorithm on 
the updated data starting with the previous state estimate as the new initial guess. The first point 
in the track was obtained once 20 bearing measurements had been collected. The estimators 
showed no dependence on the initial guess and appeared to be finding the global minimum of the 
error. 

The plots in Figures 24 to 33 show how the actual performance of the estimator depends on 
the target model and on the degree of mismatch between the model and the target's actual 
motion. The figures show Monte-Carlo simulations results for 50 runs of each of two target 
models, linear and parabolic, and for three actual target trajectories, linear, parabolic, and circu- 
lar, in the combinations listed in Table VI. These target trajectories correspond to entries (d), (c), 
and (g) in Table IV. The figures are grouped into pairs, with Figures 24, 26, 28, 30, and 32 
showing the combined Monte-Carlo results and with Figures 25, 27, 29, 31, and 33 showing sin- 
gle sample runs. The combined results show the Cramer-Rao bound standard deviations for 
target range, radial velocity, and radial acceleration errors as solid curves, the estimator biases as 
short-dashed curves, and the estimator rms errors as dotted curves. The iterative least-squares 
algorithm computes an estimate of the Fisher information matrix as a by-product, and estimated 
bounds computed from the estimates of the Fisher information matrix from a single sample run 
are shown as long-dashed lines. Since the Cramer-Rao bounds account for the uncertainty in the 
a priori target state as well as the random errors in the data, the bounds should be compared 
with the combined bias and rms errors from the Monte-Carlo simulations. The Cramer-Rao 
bound is excluded from the circular target plots in Figure 32 because the bound as calculated is 
not appropriate to such a mismatched model. The sample runs in Figures 25 and 27 were plotted 
for target trajectories at 45° to the initial line of sight to the sensor in order to avoid overlap and 
thus to make the tracks clearer. 
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TABLE VI 

Key to Figures 24 Through 33 

Target 
Trajectory 

Target 
Model Figures 

Linear Linear 24 and 25 

Linear Parabolic 26 and 27 

Parabolic Linear 28 and 29 

Parabolic Parabolic 30 and 31 

Circular Parabolic 32 and 33 
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Figure 24.    Monte-Carlo bias (dashed) and rms error (dotted) for a straight-line trajectory and target model. 
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Figure 25.    Plan view of a single run with a straight-line target trajectory and model. 
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Figure 26.    Monte-Carlo bias (dashed) and rms error (dotted) with Cramer-Rao bound (solid)for a straight-line 
target trajectory but a parabolic trajectory model. 
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Figure 27.    Plan view of a single run with a straight-line target trajectory but a parabolic model. 
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Figure 28.    Monte-Carlo bias (dashed) and rms error (dotted) with Cramer-Rao bound (solid) for a parabolic 
ta'get trajectory but a straight-line target trajectory model. 
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Figure 29.    Plan plot of a single run with a parabolic target trajectory but a straight-line target model. 
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Figure 30.    Monte-Carlo bias (dashed) and rms error (doited) with Cramkr-Rao bound (solid) for a parabolic 
target trajectory and trajectory model. 
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Figure 31.    Plan view of a sample run with parabolic target trajectory and model trajectory. 
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Figure 32.    Monte-Carlo bias (dashed) and rms error (dotted) for a circular target path 
but a parabolic target model. 

t 

46 



40 60 80 

DOWN RANGE (km) 

120 

Figure 33.    Plan view of a single run with a circular target path but a parabolic target model. 

Figures 24 and 26 show that the errors from a MAP estimator that incorporates the a priori 
knowledge that the target's acceleration is zero are smaller than the errors from an estimator that 
permits target acceleration, if the target is not in fact accelerating. The simulations also illustrate 
the impact on the estimation performance of discrepancies between the estimator's model of the 
target state and the actual motion of the target. Figures 24 and 25 and Figures 28 and 29 show 
the errors from estimators based on a constant velocity model of the target, as opposed to the 
constant acceleration model used in the other figures. A constant velocity estimator can be 
viewed as a constant acceleration estimator that happens to have definite a priori information 
that the target's acceleration is zero, and a mismatch occurs when that a priori information is 
incorrect. When the target's velocity is indeed constant, as in Figures 24 and 25, a constant veloc- 
ity estimator is superior to an estimator based on a constant acceleration model of the target. 
However, if the target describes a curved path, as in Figures 28 and 29, the constant velocity 
estimates of the position and velocity diverge radically from the true values. In the case of a con- 
stant acceleration estimate applied to a target whose rate of turn is constant, shown in Figures 32 
and 33, the errors show relatively small biases for the first 60 s, while the model and target do 
not differ greatly, but once the target begins to recede from the sensor platform the mismatched 
estimates diverge widely. The estimated Cram6r-Rao bounds from a single sample run, shown as 
long-dashed curves in the figures, match the actual Cram6r-Rao bounds very closely. In the cases 
of an accelerating target with a constant velocity model and of a circling target with a constant 
acceleration model, the estimates of the Cramdr-Rao bound give good indications of the errors 
for the periods where the target's trajectory is well-approximated by the model, but once the two 
diverge, the estimated bounds are overly optimistic. 
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The iterative least-squares estimators performed in general at the level given by the Cramdr- 
Rao lower bound on the variance of an estimate of the target location. Since the Cramer-Rao 
bound is achievable, the bound appears therefore to be a useful indicator of the level of perfor- 
mance that one can obtain in bearings-only tracking with an appropriate model of the target's 
mot on. The estimators can be designed to account for a priori information on the target state, 
whe l that information can be expressed as a Gaussian distribution. Some preliminary results 
front an iterative least-squares estimator based on a constant speed target model show that the 
estination algorithm becomes sensitive to the initial guess and frequently finds false, local min- 
ima. Additional research should be done to determine the feasibility of adding additional degrees 
of freedom to the model of target motion to reduce the degree of possible mismatch between the 
model and the actual motion of the target, particularly for long observation times, and also to 
find methods for incorporating a priori information on the target state in a form that reflects 
mor; accurately the likely behavior of the targets of interest but that does not cause the estima- 
tor algorithm to halt at false minima. 
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6.    CONCLUSIONS 

From the formulae for the Fisher information matrix, Equation (2.12), and for the Cramer- 
Rao bound, Equation (2.13), it is possible to determine how the bound depends on the angular 
accuracy of the measurements, on the rate at which samples are taken, and on the maneuvers 
performed by the sensor platform. In the absence of a priori information, the bound is propor- 
tional to the variance of the bearing measurements and to the measurement interval. Once 
a priori information is included, the dependence of the Crame>-Rao bound on these measurement 
parameters becomes more complicated, but when enough data are collected to give a more accu- 
rate estimate than the a priori information affords, the a priori information no longer has much 
effect on the bound. 

An approximation to the Cramör-Rao bound was computed for a two-parameter family of 
sensor maneuver trajectories and plotted as contours vs the two parameters. The plots disclosed 
the existence of multiple local minima in the bound and of one, or sometimes two global min- 
ima. The optimal maneuver cycle time appears to be approximately a fixed fraction of the total 
observation time allotted to the target state measurement. The bounds were relatively insensitive 
to whether the target was crossing or moving radially, or to whether it was moving along a 
parabolic or a straight path, although it appears that the heading of a crossing target can be 
more accurately measured than the heading of an inbound target. 

Even if one can calculate the optimal maneuver for the sensor given the location of the 
target, the sensor platform will generally be unable to follow that trajectory, because the optimal 
maneuver depends on the actual target state,'which is unknown, or because of other trade-offs in 
the maneuvers taken by the sensor platform. The bounds showed little sensitivity to whether the 
sensor maneuver was optimized correctly, over a range of target states, and did not depend 
strongly on whether the maneuver was optimized for target position measurement or for target 
heading measurement. The bound does depend on the maneuver cycle time, or equivalently, on 
the observation time for which the sensor maneuver was optimized. For example, doubling the 
cycle time for the maneuver approximately doubles the time required for a good estimate of the 
target's state, but once the doubled observation time has elapsed, the resulting target state esti- 
mate is more accurate than it would have been for the original cycle time. Likewise, if the cycle 
time is halved, the first estimate is available sooner, but at the original observation time the 
halved cycle time maneuver produces a less accurate estimate. 

Simulations of a practical target state estimator with a constant acceleration model of target 
motion disclosed that the Cram6r-Rao bound can be achieved by an iterative least-squares maxi- 
mum a posteriori probability (MAP) estimator, and that the Hessian matrix computed by the 
iterative least-squares algorithm is consistent with the theoretical Cramer-Rao bounds. Since there 
exist estimators that achieve the performance given by the Cram6r-Rao bound, the Cramdr-Rao 
bound appears to provide a good indication of the performance that one can expect in practice 
in other geometries. However, if the target's motion does not match the constant acceleration 
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model sufficiently closely, the estimates diverge from the correct values. Because of the limitations 
on the applicability of constant acceleration target models, it appears to be worthwhile to investi- 
gate models of target motion that both match actual targets more closely and lead to feasible 
estimai ors. 
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APPENDIX 
ITERATIVE LEAST-SQUARES ESTIMATOR EQUATIONS 

The iterative least-squares procedure employed for these calculations is a modified Newton- 
Raphson method, as described in Reference 24, pp. 187-190. The algorithm searches for a local 
minimum of the error 

J(x«) =   2 [rn - h(x',tn)]T R-i [rn - h(xt,tn)] 
n=l 

(A.l) 

where rn is the nth vector of measurements taken at time tn, h(x,t) is the predicted measurement 
vector, and Rn is the measurement correlation matrix. If the global minimum of the error is 
found, the estimate of the target state is the maximum likelihood estimate, since the a posteriori 
probability of finding a given set of data R given the target state vector xl can be written in 
terms of the error J(x') as 

p(R|xt) = Kexp[-yJ(xt)] 

for some constant K that depends on neither the state vector nor the data. 

(A.2) 

The Newton-Raphson iterative least-squares algorithm finds a target state vector at which the 
error reaches a minimum by means of the recursion [Reference 24, p. 187, Equation (4.5.1)] 

where 

xl[k + 1] = xl[k] - 

3J(x<) 

a2J(x«) 

3xt2 
x'=x'[k]J 

aj(x') 

3x« x«=x*[k] 

3xl 

(A.3) 

(A.4) 
x'=x'[k] 

is the gradient y tJ(xl) of the error with respect to the parameter vector, evaluated at the current 
estimate of the parameter vector, and where 

32J(xl) 

3xt2 
(A.5) 

x'=x'[k] 

is the Hessian of J(xl), that is, the matrix of derivatives 32J(xl)/3x'3xJ, with respect to each of 
the components xl of the state vector xl. The Newton-Raphson algorithm is modified by replac- 
ing the exact Hessian 32J(xt)/3x'3xJ, by the expression (Reference 24, pp. 189-190) 

n=l 

3h(xt,tn) 

K x<=x'[k] 

,-1 
3h(x',tn) 

3x|. x'=x«[k] 

(A.6) 
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and by replacing the update equation by 

xt[k+l] = xt[k]-ak[J"] "l-l 
3J(xl) 

3xl 
x'=x'[k] 

(A.7) 

when: a is chosen to minimize the new error. In the implementation for this study, only 
a = 1   1/2, 1/4,... were tested, and the first value of a in this series that produced a new error 
smallsr than the old error was selected. For the target state described in Equations (2.1) to (2.4), 
the approximation to the Hessian is given (Reference 8; Reference 24, pp. 187-190) by 

J"W = 2  2 Fn
T[k]Hn

T[k]R-'Hn[k]Fn[k] (A.8) 
n=I 

and the gradient by 

aj(x') 
3x» 

N 
-2   X Fn

T[k]Hn
T[k]R-'[zn-h(xt,tn)] 

n=l 

(A.9) 

when Hn|k] is the measurement gradient vector defined in Equation (2.8) at the time of the n,h 

measurement, and where Fn[k] is the propagator matrix from time tn to the present time tN, with 
the form shown in Equation (2.4), but with Ts replaced by tN - tn. Since the target and sensor 
were assumed to be coplanar, the derivatives with respect to the elevation angle 0 are dropped 
from Hn[k] and the propagator matrix Fn[k] has just two blocks instead of three. 

The a posteriori probability density of the target state assuming a zero-mean Gaussian 
a priori distribution of the target state is 

p(x'|R) = K'exp 
+ (x')2 + (yt)2 + (Xt)2 + (yt)2 

(A. 10) 

K' being a normalization constant, and ov and aa the a priori standard deviations of the target's 
velocity and acceleration, respectively. The distributions of the velocity and the acceleration of 
the target were folded into the iterative least-squares algorithm by adding the terms 

(x')2*^)2 + (xt)2 + (y')2 

(A. 11) 

to th( error and by making the necessary additions to the Hessian and to the gradient of the 
error with respect to the state vector. With these additional terms, the iterative least-squares esti- 
mate becomes a maximum a posteriori (MAP) estimator, since it finds the global minimum of 

. .(*t)2 + ftt)2.(gt)2 + (yt)2 
'MAP - J + ~2 + 2 (A. 12) 

The approximation to the Hessian for JMAP corresponding to Equation (A.6) is nearly identical 
in foim to twice the Fisher information matrix for estimating \x with prior information, with the 
exception that the present quantity is evaluated along the estimated target trajectory rather than 
along the actual trajectory. 
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